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Over the past decade, there has been a high 
level of interest in modeling consumer behav-
ior in the fields of computer science and statis-
tics. These applications are motivated in part by 
the availability of large datasets, and are com-
monly used by firms in the retail, health care, 
and Internet industries to improve business deci-
sions. In this paper, we compare these methods 
to standard econometric models that are used 
by practitioners to study demand.1 We are moti-
vated by the problem of finding practical tools 
that would be of use to applied econometricians 
in estimating demand with large numbers of 
observations and covariates, such as in a scanner 
panel dataset.

Many economists are unfamiliar with 
these methods, so we briefly sketch several 
 commonly-used techniques from the machine 
learning literature.2 We consider eight different 
models that can be used for estimating demand: 
linear regression, the conditional logit, and six 
machine learning methods, all of which dif-
fer from standard approaches by combining an 
element of model selection into the estimation 
procedure. Several of these models can be seen 
as variants on regularization schemes, which 
reduce the number of covariates in a regres-
sion which receive nonzero coefficients, such as 

1 Hastie, Tibshirani, and Friedman (2009) is a compre-
hensive reference. 

2 See, for example, Belloni, Chernozhukov, and Hansen 
(2014) and Varian (2014). 
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 stepwise regression, forward stagewise regres-
sion, LASSO, and support vector machines. We 
also consider two models based on regression 
trees, which are flexible methods for approxi-
mating arbitrary functions: bagging and random 
forests. While these models may be unfamiliar 
to many economists, they are surprisingly sim-
ple and are based on underlying methods that 
will be quite familiar. Also, all of the methods 
that we use are supported in statistical pack-
ages. We perform our computations in the open 
source software package R. Therefore, applica-
tion of these methods will not require writing 
complex code from scratch. However, applied 
econometricians may have to familiarize them-
selves with alternative software.

We apply our method to a canonical demand 
estimation problem. We use data from IRI 
Marketing Research (Bronnenberg, Kruger, 
and Mela 2008) via an academic license at the 
University of Chicago. It contains scanner panel 
data from grocery stores within one grocery 
store chain for six years. We used sales data on 
salty snacks, which is one of the categories pro-
vided in the IRI data. The number of observa-
tions is 1,510,563, which includes 3,149 unique 
products.

If we allow for product and store level fixed 
effects, our model effectively has many thou-
sands of explanatory variables. Therefore, vari-
able selection will be an important problem. If 
we included all of these variables in a standard 
regression model, the parameters would be 
poorly estimated. Also, many of the regressors 
will be multi-collinear which will make the 
models predict poorly out of sample.

In our results, we find that the six models we 
use from the statistics and computer science 
literature predict demand out of sample in stan-
dard metrics much more accurately than a panel 
data or logistic model. We do not claim that 
these models dominate all methods proposed in 
the voluminous demand estimation literature. 
Rather, we claim that as compared to common 
methods an applied econometrician might use in 

http://dx.doi.org/10.1257/aer.p20151021
http://dx.doi.org/10.1257/aer.p20151021
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off the shelf statistical software, these methods 
are considerably more accurate. Also, the meth-
ods that we propose are all available in the well 
documented, open software package R as well 
as commercially-available software.

Finally, we propose using an idea dating 
back at least to Bates and Granger (1969). We 
treat each of these eight independent predic-
tions as regressors and form a combined model 
by regressing the dependent variable on to the 
prediction of each component model. We use a 
three-way cross validation to avoid overfitting 
the models in practice. We split the sample into 
three disjoint sets; we use the first set to fit all 
eight models, we use the second set to fit our 
regression on the eight independent model pre-
dictions, and we use the third set of the data 
to test the fit out of sample. We find that this 
combination procedure can lead to substantial 
improvements in fit with little additional work. 
And, as we detail in Bajari et al. (2014), the 
combined model exhibits standard asymptotic 
behavior, even though the component models 
may not, which simplifies the construction of 
standard errors.

I. Summary of Machine Learning Methods

We explore using machine learning tech-
niques to predict demand. We briefly discuss 
each method in turn before applying them to 
estimation of demand using a scanner panel 
dataset.

A typical specification for demand of product  
j  in group  h  in market  m  at time  t  would be

(1)   Y  jhmt   = f (X, D, p ) ′  β +  ζ  hm   +  η  mt   +  ϵ  jmt  ,  

where  f  generates arbitrary interactions between 
the observables ( X ), demographics ( D ), and 
prices ( p ). Such a model may have thousands of 
right-hand-side variables; an extreme example 
from Rajaraman and Ullman (2011) notes that 
Google estimates the demand for a given web 
page by using a model of the network structure 
of literally billions of other web pages on the 
right-hand side. Dummy variables on nests are 
captured by   ζ  hm   . Seasonality is captured by the 
term   η  mt    , which varies by time (say, quarters) 
across markets.

In ordinary least squares (OLS), the 
parameters of equation (1) are typically 

estimated using the closed-form formula 
 β =  (X′ X)   −1 (X′ Y) . This formula requires 
an inversion of  (X′ X)  , imposing a rank and 
order condition on the matrix  X . We highlight 
this because in many settings, the number of 
 right-hand-side variables can easily exceed the 
number of observations. Even in the simplest 
univariate model, one can saturate the  right-hand 
side by using a series of basis functions of  X . 
This restriction requires the econometrician to 
make choices about which variables to include 
in the regression. We will return to this below, as 
some of the machine learning methods we dis-
cuss below allow the econometrician to skirt the 
order condition by combining model selection 
and estimation simultaneously.

A large literature on differentiated products 
has focused on logit-type models, where the 
idiosyncratic error term is assumed to be dis-
tributed as a Type I Extreme Value. Under that 
restriction, market shares are given by

(2)   s  jhmt   =   
exp ( θ ′    X  jhmt  )

  _____________  
 ∑ k∈J     exp ( θ ′  

 
 X  khmt  )

   . 

Quantities are then computed by multiplying 
through by market size.3

Stepwise regression starts with the intercept 
as the base model on a set of demeaned covari-
ates. The algorithm then searches over the set of 
covariates, selects the one with the highest cor-
relation with the residual, and adds that variable 
to the next model. The method then estimates 
OLS using that subset of covariates, then repeats 
the search for the covariate with the next highest 
correlation. The procedure produces a series of 
nested models and runs until no covariates have 
a sufficiently high correlation with the error 
term.

Forward stagewise regression is a variant on 
the stepwise regression. Whereas all of the coef-
ficients can change at each step in the stepwise 
regression, forward stagewise regression only 
updates one coefficient at each step. The method 
finds the variable with the highest correlation 
with the error term and adds that covariance to 
the coefficient. This continues until none of the 

3 Berry, Levinsohn, and Pakes (1995) extend this model 
to deal with unobserved heterogeneity and vertical charac-
teristics that are observed to both the firm and consumers. 
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covariates have any correlation with the error 
term.

These methods build up the model over time 
in addition to estimating a fit. One advantage of 
this approach is that the methods can recover the 
true data-generating process when the number 
of covariates is larger than the number of obser-
vations and the true model is sparse, e.g., the 
number of coefficients with true nonzero values 
is less than the number of observations.

Support vector machines (SVM) are a penal-
ized method of regression, using the following:

(3)   min  
β
  

 
     ∑ 

i=1
  

n
    V( y  i   −  X  i  ′   β) +   λ __ 

2
    | β  | , 

where the loss function is

(4)   V  ϵ  (r) =  { 
0
  | r | − ϵ   if | r | < ϵ,

  
otherwise.

    

The tuning parameter,  ϵ  , controls which errors 
are included in the regression. Errors of suffi-
ciently small size are treated as zeros. Typically 
only a partial set of the covariates are assigned a 
nonzero value in SVM regression.

LASSO is another penalized regression 
method. The regression is given by

(5)   min  
β
  

 
     1 __ 

2
     ∑ 
i=1

  
n
     ( y  i   −  β  0   −   ∑ 

j=1
  

p

     x  ij    β  j  )    
2

 

 + λ(t −   ∑ 
j=1

  
p

    |  β  j   |), 

where  t  is the tuning parameter governing how 
strictly additional regressors are penalized. 
LASSO typically results in a number of covari-
ates being given zero weights.

Regression trees approximate functions 
by partitioning the characteristic space into a 
series of hypercubes and reporting the average 
value of the function in each of those partitions. 
Regression trees generalize fixed effects to allow 
them to depend on values of  X . In the limit as 
the hypercubes grow infinitesimally small, the 
tree reports the average value  Y = f (X = x)  , 
which is a perfect reconstruction of the underly-
ing function  f . In practice, the tree is expanded 
until the reduction in squared prediction error 

falls under some threshold. Often, the tree is 
grown until a specific number of splits are 
achieved.

The literature has proposed several variations 
on the regression tree estimator. One is bagging 
(Breiman 1996), which uses resampling and 
model combination to obtain a predictor. The 
idea is to sample the data with replacement  B  
times, train a regression tree on each resampled 
set of data, and then predict the outcome at each  
x  through a simple average of the prediction 
under each of the  B  trees.

A second approach, which we have found 
to work exceptionally well in practice, are ran-
dom forests, as in Breiman (2001). Random 
forests expand on the idea of using collections 
of predictors to make predictions by introduc-
ing randomness into the set of variables which 
are considered at node level for splitting. Before 
each split, only  m ≤ p  of the explanatory vari-
ables are included in the split search. Repeating 
this across  B  trees results in a forest of random 
trees. The regression predictor for the true func-
tion is then

(6)    f ̂     r   f  
B
   (x) =   1 __ 

B
     ∑ 
b=1

  
B
     T  b  (x) . 

Trees of sufficient size can be unbiased but 
exhibit high variance, and therefore may benefit 
from averaging.

II. Empirical Application

This section compares econometric mod-
els with machine learning ones using a typical 
demand estimation scenario—grocery store 
sales. We find that the machine learning models 
in general produce better out-of-sample fits than 
linear models without loss of in-sample good-
ness of fit. If we combine all the models linearly 
with nonnegative weights, the resulting combi-
nation of models produces better out-of-sample 
fit than any model in the combination.

The data we use is provided by IRI Marketing 
Research via an academic license at the 
University of Chicago. It contains scanner panel 
data from grocery stores within one grocery 
store chain for six years. We used sales data 
on salty snacks, which is one of the categories 
in the IRI data. A unit of observation is prod-
uct  j  , uniquely defined by a UPC (Universal 



www.manaraa.com

MAY 2015484 AEA PAPERS AND PROCEEDINGS

Product Code), in store  m  at week  t . The number 
of observations are 1,510,563, which includes 
3,149 unique products. Let   q  jmt    be the number 
of bags of salty snack  j  sold in store  m  at week 
 t . If   q  jmt   = 0  , we do not know if it is due to no 
sale or out-of-stock and the observation is not 
filled in. The price   p  jmt    is defined as the quantity 
weighted average of prices for product  j  in store  
m  at week  t . Therefore if   q  jmt   = 0  , the weight 
is also  0 . In addition to price and quantity, the 
data contains attributes of the products (such as 
brand, volume, flavor, cut type, cooking method, 
package size, fat and salt levels) and promotional 
variables (promotion, display, and feature).

The response variable is log of quantity sold 
per week. The covariates are log of price, prod-
uct attributes variables, promotional variables, 
store fixed effects, and week fixed effects. We 
provide the same covariate matrix to all of the 
models except for the logit model, where all the 
fixed effects are excluded.4

In order to estimate and compare models, we 
split our data into three sets: training, validation, 
and holdout. We estimate the model using the 
training set, and then use the validation set to 
assign weights to each model when building the 
combined model. This approach mitigates over-
fitting in the training model; for example, the 
linear model tends to get a good in-sample fit 
but a bad out-of-sample fit, and granting these 
models a large in-sample weight would produce 
poor predictions in the holdout sample. Finally, 
we combine each model to predict fit in a hold-
out sample. Twenty-five percent of the data is 

4 For brevity, we have minimized the description of the 
dataset and details of implementation of the machine learn-
ing methods; Bajari et al. (2014) provides more details about 
the construction of the dataset. 

used as the holdout  sample, 15 percent is used 
as the validate set, and the remaining 60 percent 
is used as the training set.

Table 1 reports the root mean squared pre-
diction error (RMSE) across the validation and 
out-of-sample datasets, along with the estimated 
weights of each model in the combined model. 
Judged by out-of-sample prediction error, the 
best two models are random forest and support 
vector machine. The combined model, where we 
regress the actual value of the response variable 
on a constrained linear model of the predictions 
from eight models, outperforms all the eight 
models, which follows the optimal combina-
tion of forecasts in Bates and Granger (1969). 
Random forest receives the largest weight in the 
combined model (65.6 percent), and the step-
wise and forward stagewise models receive the 
majority of the rest. It is interesting to observe 
the combined model does not simply choose the 
submodel with the best RMSE; there are import-
ant covariances among the models which gener-
ate better fit in combination than any one given 
submodel.

III. Conclusion

In this paper, we review and apply several 
popular methods from the machine learning 
literature to the problem of demand estima-
tion. Machine learning models bridge the gap 
between parametric models with user-selected 
covariates and completely non-parametric 
approaches. We demonstrate that these meth-
ods can produce superior predictive accuracy as 
compared to a standard linear regression or logit 
model. We also show that a linear combination 
of the underlying models can improve fit even 
further with very little additional work. While 

Table 1—Model Comparison: Prediction Error

Validation Out-of-sample
Percent

RMSE SE RMSE SE weight

Linear 1.169 0.022 1.193 0.020 6.62
Stepwise 0.983 0.012 1.004 0.011 12.13
Forward stagewise 0.988 0.013 1.003 0.012 0.00
LASSO 1.178 0.017 1.222 0.012 0.00
Random forest 0.943 0.017 0.965 0.015 65.56
SVM 1.046 0.024 1.068 0.018 15.69
Bagging 1.355 0.030 1.321 0.025 0.00
Logit 1.190 0.020 1.234 0.018 0.00
Combined 0.924 0.946 100.00
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these methods are not yet commonly used in 
economics, we think that practitioners will find 
value in the flexibility, ease-of-use, and scalabil-
ity of these methods to a wide variety of applied 
settings.

One concern has been the relative paucity of 
econometric theory for machine learning mod-
els. In related work (Bajari et al. 2014), we 
provide asymptotic theory results for rates of 
convergence of the underlying machine learn-
ing models. We show that while several of the 
machine learning models have non-standard 
asymptotics, with slower-than-parametric rates 
of convergence, the model formed by combining 
estimates retains standard asymptotic proper-
ties. This simplifies the construction of standard 
errors for both parameters and predictions, mak-
ing the methods surveyed here even more acces-
sible for the applied practitioner.
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